skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salge, Christoph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper introduces an information-theoretic method for selecting a subset of problems which gives the most information about a group of problem-solving algorithms. This method was tested on the games in the General Video Game AI (GVGAI) framework, allowing us to identify a smaller set of games that still gives a large amount of information about the abilities of different game-playing agents. This approach can be used to make agent testing more efficient. We can achieve almost as good discriminatory accuracy when testing on only a handful of games as when testing on more than a hundred games, something which is often computationally infeasible. Furthermore, this method can be extended to study the dimensions of the effective variance in game design between these games, allowing us to identify which games differentiate between agents in the most complementary ways. 
    more » « less
  2. null (Ed.)
    Deep reinforcement learning has learned to play many games well, but failed on others. To better characterize the modes and reasons of failure of deep reinforcement learners, we test the widely used Asynchronous Actor-Critic (A2C) algorithm on four deceptive games, which are specially designed to provide challenges to game-playing agents. These games are implemented in the General Video Game AI framework, which allows us to compare the behavior of reinforcement learning-based agents with planning agents based on tree search. We find that several of these games reliably deceive deep reinforcement learners, and that the resulting behavior highlights the shortcomings of the learning algorithm. The particular ways in which agents fail differ from how planning-based agents fail, further illuminating the character of these algorithms. We propose an initial typology of deceptions which could help us better understand pitfalls and failure modes of (deep) reinforcement learning. 
    more » « less